Investigating the Sources and Optical Importance of Brown Carbon during DC3 and SEAC4RS

Rodney J. Weber, <u>Jiumeng Liu</u>, Eric Scheuer, Jack Dibb, Luke Ziemba, Kenneth.L.Thornhill, Bruce E. Anderson, Armin Wisthaler, Tomas Mikoviny, Joshua Schwarz, Ru-shan Gao, Tom Ryerson, Ilana Pollack, Jeff Peischl

Objectives

- ❖ DC3: Assess Optical Importance of BrC in Background Continental Troposphere.
- ❖ SEAC4RS: Investigate BrC in biomass burning plumes:
 - Comparison of direct measured BrC to Ångström Exponents from optical instruments (PSAP and possibly PAS)
 - Prevalence of BrC relative to BC
 - Formation of BrC with plume aging (secondary BrC)?
 - ❖ BrC versus Mixing State (Shell Cores) and light absorption

Method: Direct Measurement of BrC

- ♦ Brown carbon determined from solution extracts
- Isolate brown carbon from other light absorbers
- † Highly wavelength-resolved

DC3 Results Summary: No Plumes

See: Liu et al, Geophys. Res. Lett., 41, doi:10.1002/2013GL058976

SEAC4RS RESULTS

Use of 3-\(\lambda\) PSAP Data

Use of PSAP data averaged to filter sampling times to determine: AAE, b_{ap} at 365 nm of BC, Total b_{ap}

Optical Closure: BrC & BC (a) 365nm

Aug. 19 Flight: BrC and AAE

BrC relative to BC vs Absorption Ångström Exponents

At PSAP Absorption Ångström Exponents greater than ~1 to 1.5, BrC Absorption wrt BC concentration increases with AAEs. Pure BC AAE ~ 1.

AAEs > 1 are linked to BrC

Note on comparison between PAS (photo-acoustic instrument) and PSAP. Absorption coefficients are highly correlated (r > 0.95) and averaging over the PAS sampling period $AAE_{PAS}/AAE_{PSAP} = 0.90$

Is BrC Formed as Smoke Plume Ages?

Possible evidence in some plumes that BrC may form as plume ages

Plume	Evidence for BrC/BC increase with plume age
Aug 06	maybe
Aug 19	yes
Aug 26	No
Aug 27	yes
Sep 06	1 data pt
Sep 09	No BC data
Sep 11	2 data pts
Sep 16	No (negative slope)
Sep 23	maybe

Summary/Future Work

- 1. BrC is a significant light absorbing component of biomass burning plumes
 - Good closure between light absorption from BrC and observed abs at 365 nm
 - ~70% of light absorption at 365 nm from BrC (lower % at higher wavelengths)
 - $\sim \frac{1}{2}$ of BrC is water-soluble (Aug. 19 plumes).
- 2. Possible evidence of shell-core effects on light absorption at high loadings?
- 3. Secondary BrC production may occur in select plumes.
 - Will compare with evolution of other plume parameters to assess why.
- 4. Future Work: Assess contribution of BrC in smoke plumes to:
 - Atmospheric stability (T profile), cloud microphysics, regional Climate via CMAQ